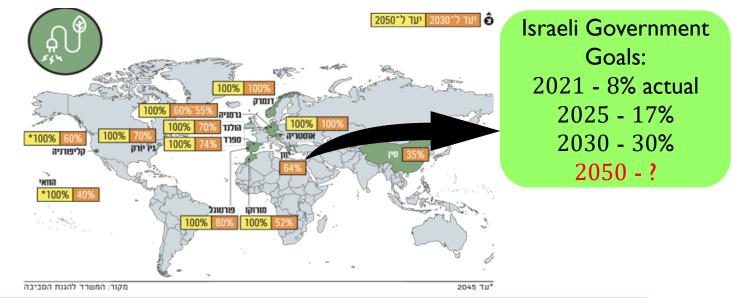


The Potential of Renewable Electricity in Israel in 2050

G. Mittelman, R. Eran, L. Zhivin, O. Eisenhändler, Y. Luzon and <u>M. Tshuva</u>

Afeka College of Engineering


November 29, 2022

1 | RE in Israel 2050

Background

- ✤ Paris Agreement 2015 (goal 1.5°÷2°C)
- COP 26 (Glasgow, 2021) ISR reducing GHG emissions: 27% by 2030 and 85% by 2050.

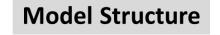
In this study: emission reduction is assumed to be promoted only through the generation of renewable electricity

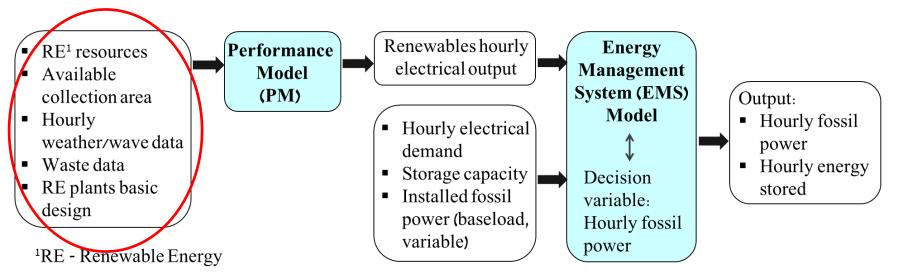
- Develop a holistic approach: input data, models? Applicable in a wide range of input data (region, RE, demand, etc.)
- Detailed evaluation of RE resources in ISR
- Obtain the energy mix in 2050 that would allow maximum penetration of renewables to the grid. Identify scenarios with:
 - Low energy dumping
 - Reasonable fossil capacity factor/availability

IIASA-Israel Symposium on Sustainability Pathways empowered by Systems Analysis

Previous Studies: Recap

- ✤ About 20 references (!)
- ✤ Input data
 - Weather: specific year, single location
 - Resources: solar and wind. No detailed area planning (agriculture?)
 - Storage: not based on actual market limitations
- Performance Model (PM)
 - Hourly
 - Not detailed (basic design), not dynamic, no complete plant
- Energy management model
 - "Energy system analysis models"
 - Free parameters: grid flexibility, storage capacity
 - No battery charging & discharging power limitations
- No full system integration

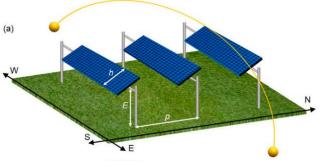




Methodology

Features:

- Time step = 1 hr
- No limitations on grid development (TBD)
- ISR grid is isolated, no outage is allowed
- RE: Green Line only, Demand: Green Line and West Bank



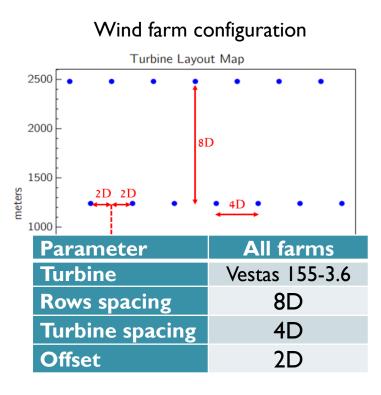
Available Area: PV

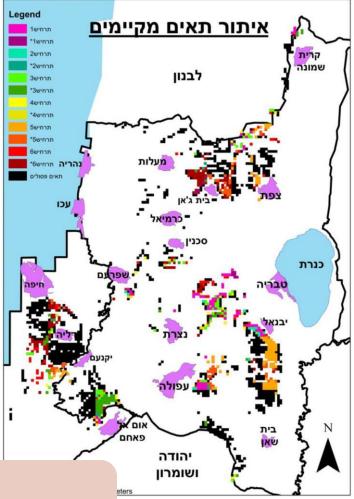
Total	0	Agr	icultural area		-	0	+	++
Total area	Open area	Total	Pre-approved	High		Neutral	Gain	High
	[km ²]	Area	for urbanization	Loss	loss	[km ²]	[km ²]	Gain
[km²]	[KIII]	[km²]	[km²]	[km²]	ĮKII J			[km²]
21,616	1,129	4,112	2,826	287	632	359	5	3

Incl. unknown impact

Deverseter	APV	PV	
Parameter	(GCR=0.2564)	(GCR=0.5)	
Tilt angle	40°	24°	
Response to	in tolerant	tolerant	
shade	molerant	tolerant	
Panel	Bifacial 545M	Bifacial 545M	
Land multiplier	1.29	1.29	

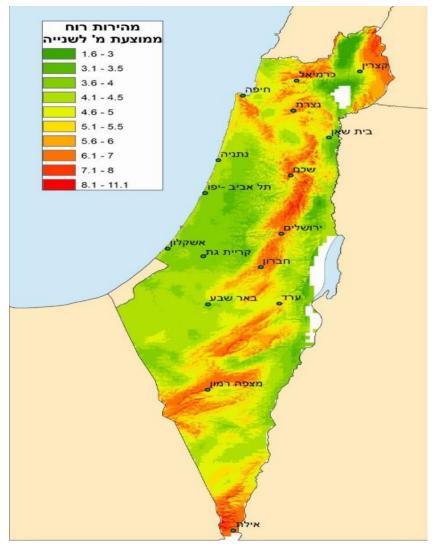
Riaz, IEEE Journal of Photovoltaics, 2021


Findings:


Open area: **PV** - 1,129 km² (open) + 367 km² (tolerant), 132 GW Agriculture: **APV** - 919 km² (intolerant), 40 GW

6 | RE in Israel 2050

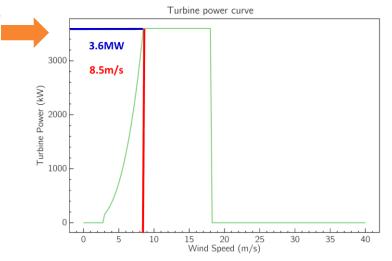
Cont'd...


Findings: Onshore (North): 370 km², 1.93 GW (535×3.6 MW) Offshore (Haifa): 400 km², 2.88 GW (800×3.6 MW)

ארז פרי, 2020

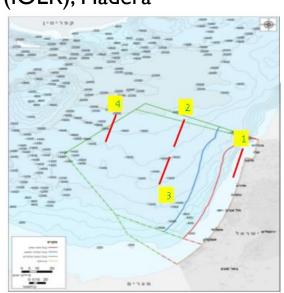
Available Area: Wind

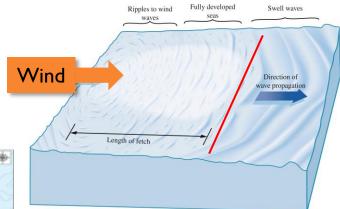
- South: military areas and natural reserves
- East: areas near the West Bank
- North: dictated by public policy (Peri, 2020)


השירות המטאורולוגי הישראלי,2015 בגובה 100 מ'

Input Data: Performance Model

- Weather: TMY from PVGIS
 - Onshore wind (north) speed: 51% of IMS
 - Offshore wind: (Haifa)
- Wave: in-house TMY (next slide)
- ✤ Organic waste
- Basic design
 - Main components (panels, inverters, wind turbines, batteries): Tier 1
 - Configuration





Wave

- ✤ P'~H²·T [W/m]
- Significant wave height, *H* and energy period, *T* (2005-2019): Israel Oceanographic and Limnological Research (IOLR), Hadera
- TMY: in-house
- ✤ WEC efficiency=50%
- ✤ 4×40 km
- Capacity Factor=8.8%

Pecher, Handbook of Ocean Wave Energy, 2017

Eco Wave Power, Gibraltar

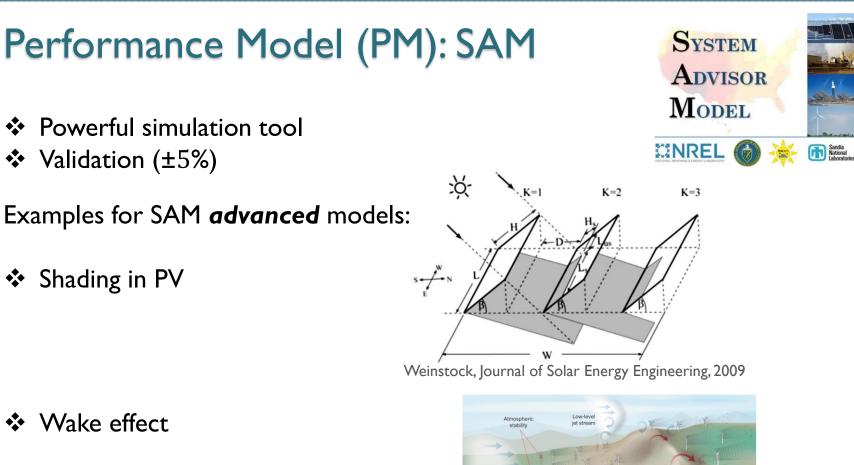
Findings: Israel Exclusive Economic Zone (EEZ): 3.2 km², 3 GW

10 | RE in Israel 2050

IIASA-Israel Symposium on Sustainability Pathways empowered by Systems Analysis

Biomass

Resources

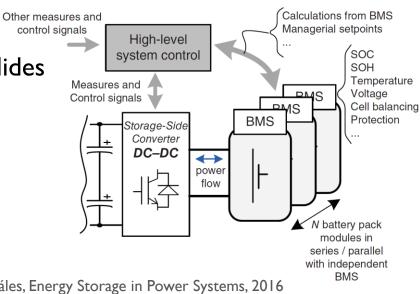

- × Forestry
- × Energy crops
- ✓ Agricultural waste
- ✓ Municipal waste

- Data
 - MoEP, 2014
 - Annual population growth rate 1.8% [CBS medium, 2017]
 - Gasification (0.65 MWhe/ton organic)
 - Anaerobic digestion (0.15 MWhe/ton organic)

Findings: Organic waste ≈ 9,000,000 ton/yr (2050) Annual electric energy 3 TWhe, 0.35 GW (24/7)

Atmospheri boundary

Ginley, Fundamentals of Materials for Energy and Environmental Sustainability, 2012 All rights reserved © Afeka

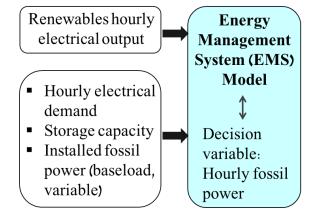

**

• •

Cont'd...

- ✤ Battery system (BMS) next slides
 - Shepherd model
 - Peukert's law
 - And more...
- Other features in the SAM
 - Balance of System (BOS)
 - ...

Diaz-Gonzales,	Energy	Storage	IN	Power	Systems, 201	6

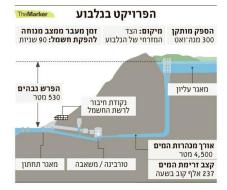

Resource	No. Simulations	Plant area/capacity	No. Units	Total area/capacity
PV	5	1 km ²	1,554	1,554 km ²
APV	5	1 km²	918	918 km²
Wind onshore	21	1÷86 km ²	26	372 km ²
Wind offshore	1	10 km ²	40	400 km ²
Storage	1	1 GWh	216	216 GWh

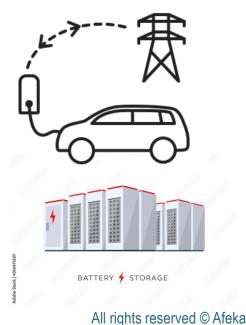
EMS Input

- Renewables electric output PM
- Electric consumption (demand) total 183.3 TWh
 - IEC 2016
 - Annual growth rate 2.8% [Electricity Auth., 2020]
 - Annual decrease in energy intensity 1.3% [MoE, 2020]
 - Transportation 22.7 TWh [Gal, 2021]

Type of vehicle	No. of vehicles [million]	Annual trip [km]	consumption	Energy consumption in transport [TWh]
BEV	6.6	16,200	18	19.25
PHEV	0.4	16,200	20	1.30
Bus	0.022	71,000	120	1.87
Minibus	0.015	62,500	35	0.32

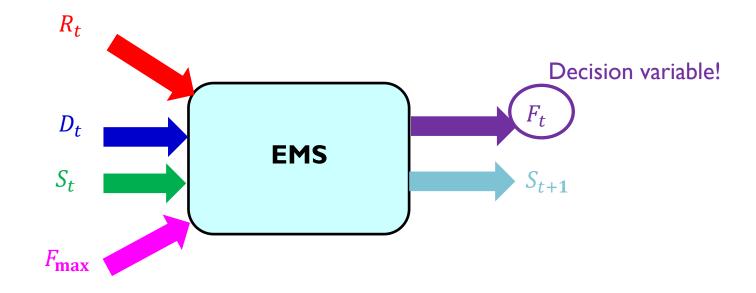
✤ Installed fossil power: 25÷31 GW


160.5 TWh



Storage

Total capacity: 216 GWh


- ♦ Pumped Hydro ≈ 8.0 GWh
 - Ma'ale Gilboa 3.0 GWh
 - Kokhav Ha'Yarden 3.4 GWh
 - Manara Cliff 1.56 GWh
- ✤ Vehicle to Grid (V2G) 169.4 GWh
 - 7.0 million vehicles, 50 kWhe each
 - Lower SoC limit for daily use 30% (15% use)
 - Vehicles simultaneously plugged in 2/3
- Stationary battery 39.2 GWh
 - Identical to ISR vehicle global share 0.87%
- Battery: LG JH4 Li-ion, 72.5 Ah

EMS - Mathematical Model

- R_t Renewable electric energy during interval t
- D_t Electrical energy demand during interval t
- S_t Amount of stored energy at the beginning of interval t
- *F*_{max} Installed fossil power (baseload and variable)
- F_t Amount of fossil electrical energy produced during interval t

Cont'd...

Other variables	Description
Q_t	Amount of energy dumped during interval t
B _t	Amount of energy charged into the battery bank at interval t
Ut	Amount of energy discharged from the battery bank at interval t

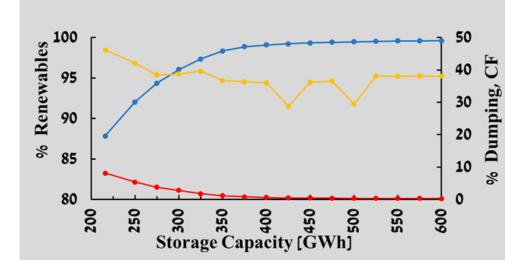
Subjected to:

The objective function **Minimize** $\sum_{t=1}^{T} F_t$

The contribution of	
renewables	

RE[%]=1-
$$\frac{\sum_{t=1}^{T} F_t}{\sum_{t=1}^{T} D_t}$$

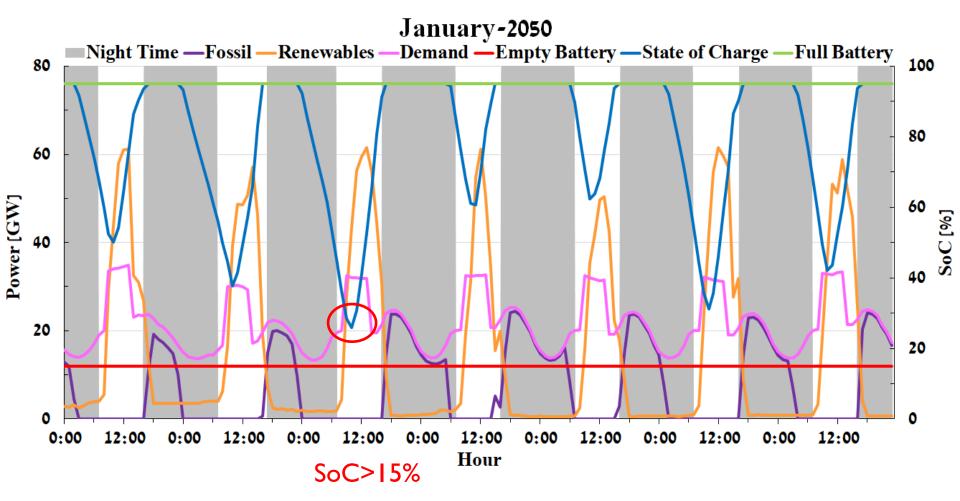
	Cabjected to:	
	$F_t + R_t - D_t = B_t - U_t + Q_t$	$\forall t = 1, \dots, T + 1$
	$S_{t} \leq S_{t-1} + \eta_{ch} B_{t-1} - \frac{1}{\eta_{dc}} U_{t-1}$	$\forall t = 2, \dots, T + 1$
Fixed, fr	om PM $\eta_{ch}B_t \leq \Delta S_{max}^{ch}$	$\forall t = 2, \dots, T + 1$
	$\frac{1}{\eta_{dc}}U_t \le \Delta S_{\max}^{dc}$	$\forall t = 2, \dots, T + 1$
	$S_{1} = S_{1}$	
	$S_{\min} \le S_t \le S_{\max}$	$\forall t = 2, \dots, T + 1$
	$F_{\min} \le F_t \le F_{\max}$	$\forall t = 1, \dots, T$
	$B_t, U_t, Q_t \ge 0$	$\forall t = 1, \dots, T + 1$



Scenarios/Sensitivity

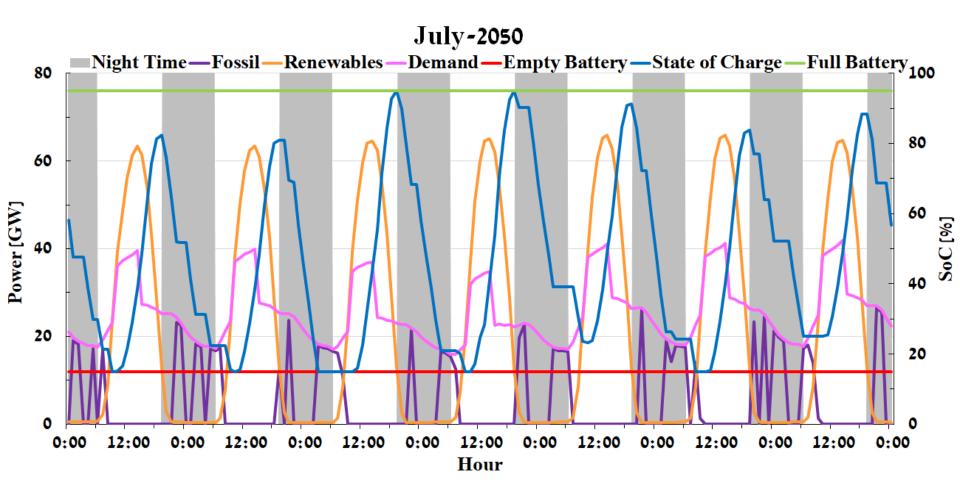
--- % Renewables

		-			U
Scenario	Installed Power R/F [GW]	Storage Capacity S [GWh]	Renewables Share [%]	Dumping [%]	Fossil Capacity Factor (CF) [%]
2030	25.6/11	60	47.3	13.0	54.7
2050-A	172.5/31.2	216	87.8	46.1	8.2
2050-В	86.3/30.6	216	80.1	4.9	13.6
2050-S	172.5/30.8	500	99.5	29.5	0.4

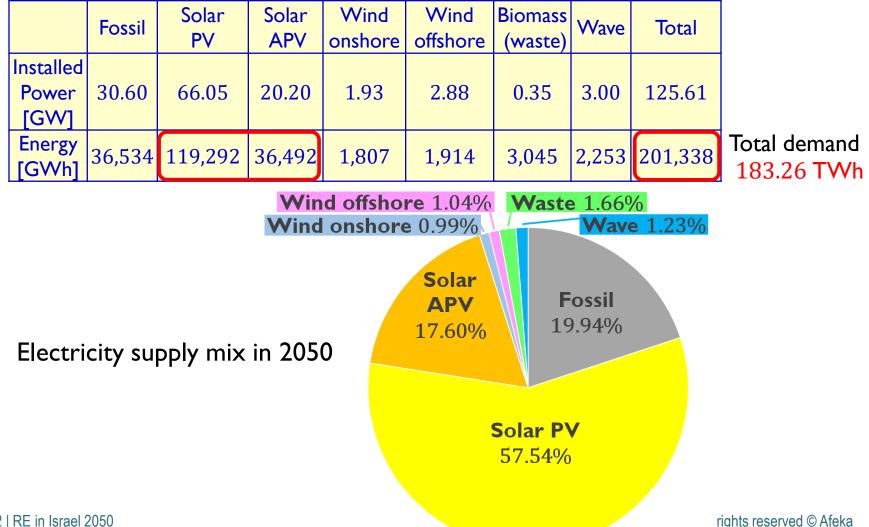


% Dumping

-Fossil CF


Operating Schedule 2050-B: Winter

20 | RE in Israel 2050

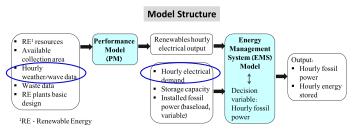


Operating Schedule 2050-B: Summer

Electrical Energy Mix: 2050-B

Comparison to Previous Works: 2050

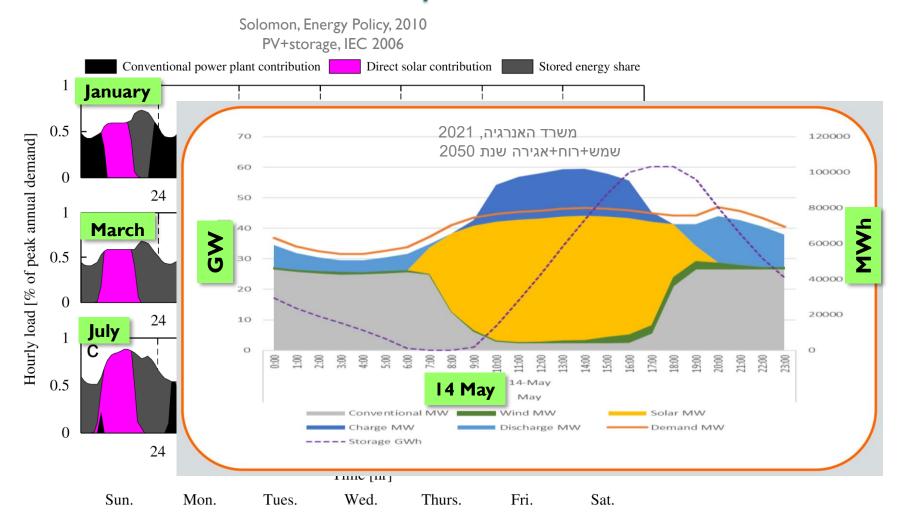
Reference	Electric Demand [TWh]	Storage	Installed Power [GW] Fossil - F Renewables - R	% Renewables	% Dumping	Fossil CF [%]
Greenpeace	88	n/a	R = 21.9	47	n/a	n/a
Ministry of Energy	158	265	F = 16.0 R = 170.0	80	n/a	n/a
NZO	162	320	F = 17.5 R = 116.5	95	n/a	n/a
Ministry of Environmental Protection	158	230	F = 17.1 R = 80.9	80	n/a	n/a
Current study 2050-B	183	216	F = 30.6 R = 94.4	80	4.94	13.6



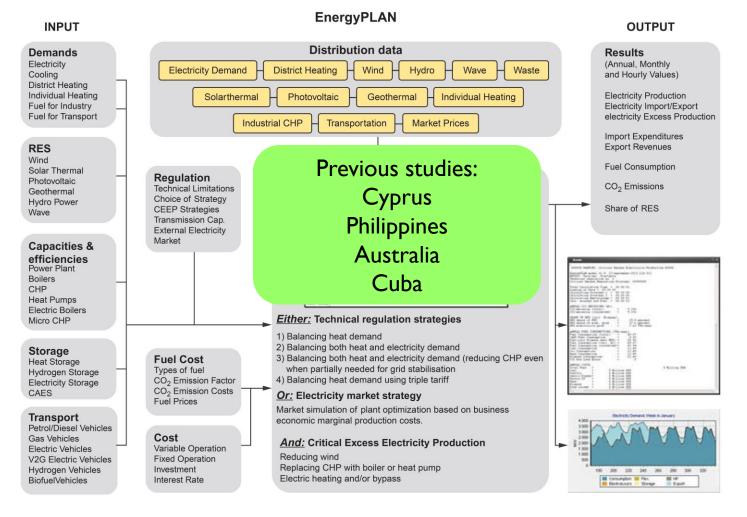
Conclusions

- Input data:
 - ✓ **Detailed**: weather, wave, area planning, basic design
 - Future refinement:
 - Wind data (onshore and offshore)
 - Wave data at deep sea
 - Crops response to shade
- Modeling/analysis
 - ✓ Holistic approach
 - Applicability: any input data (region, year)
 - Future refinement: No. sites, time steps

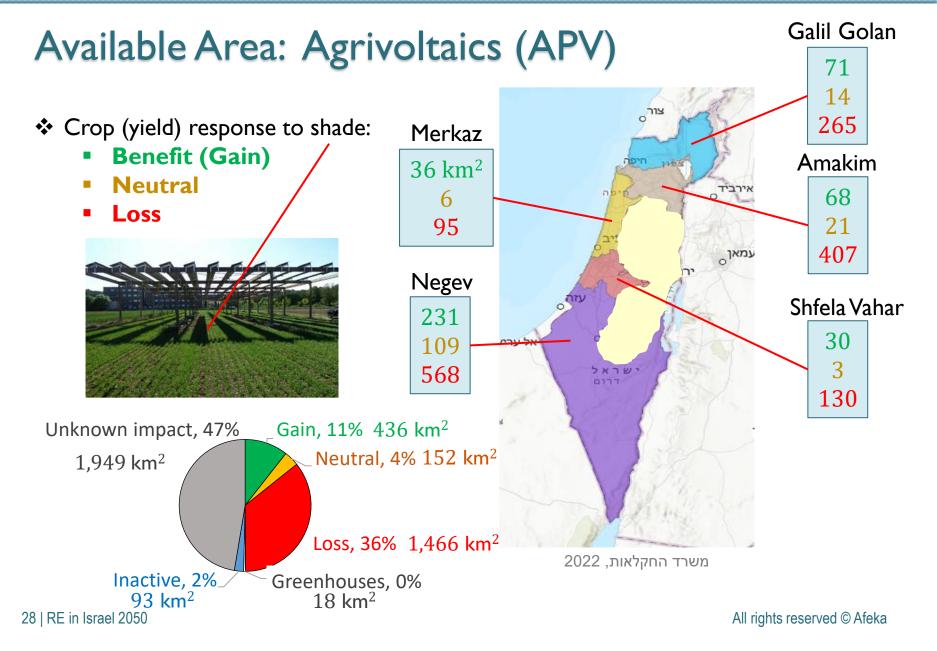
big data



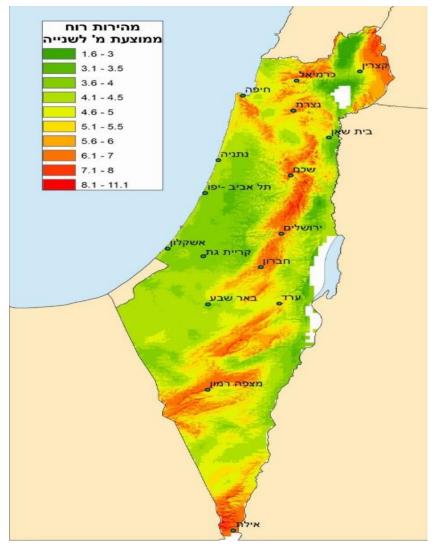
Supporting Material



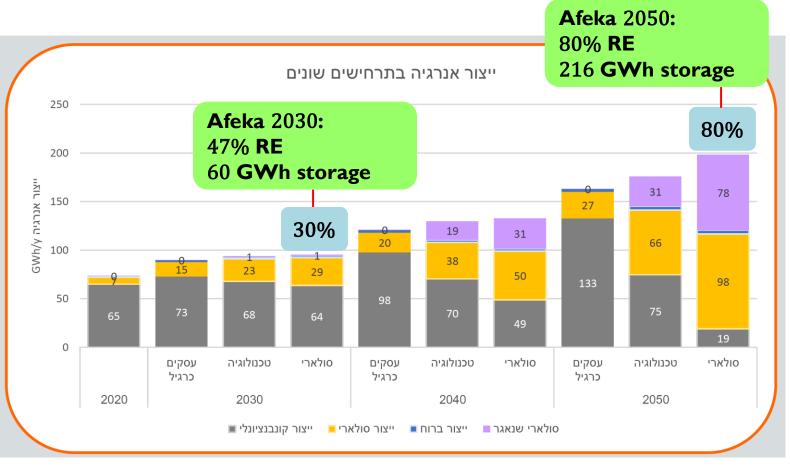
Previous Studies: Examples


Energy Management System

27 | RE in Israel 2050


IIASA-Israel Symposium on Sustainability Pathways empowered by Systems Analysis

Available Area: Wind


- South: military areas and natural reserves
- East: areas near the West Bank
- North: dictated by public policy (Peri, 2020)

השירות המטאורולוגי הישראלי,2015 בגובה 100 מ'

ISR 2050?

משרד האנרגיה, מפת הדרכים למשק אנרגיה דל פחמן עד שנת 2050 (אוקטובר 2021)

IIASA-Israel Symposium on Sustainability Pathways empowered by Systems Analysis

Conclusions

- Input data:
- Modeling/analysis

big data

- Economics are currently excluded
 - Micro level (2050?):
 - Power plants
 - Infrastructure
 - Macro level
 - Environmental impact
 - Climate crisis cost?

Acknowledgments

- Prof. Erel Avineri
- Lev Zhivin (graduate, Energy Eng.)
- Dr. Ohad Eizenhendler

School of Industrial Engineering and Management

Dr. Yossef Luzon

School of Industrial Engineering and Management

Team members: all Afeka (!)

